TRIGONOMETRIC FORMULAS APPLICABLE IN 9TH, 10TH STANDARD


TRIGONOMETRIC FORMULAS APPLICABLE IN 9TH, 10TH STANDARD
https://dinesh51.blogspot.com
TRIGONOMETRY

sinθ=PerpendicularHypotenuseCosθ=BaseHypotenuseTanθ=PerpendicularBase
Cotθ=BasePerpendicularSecθ=HypotenuseBaseCosecθ=HypotenusePerpendicular
Sinθ=1CosecθCosθ=1SecθTanθ=1Cotθ
Tanθ=SinθCosθCotθ=CosθSinθ
TRIGONOMETRY
VALUE OF THE TRIGONOMETRIC FUNCTIONS WITH STANDARD ANGLE
Table 1
0o
30o
45o
60o
90o
180o
270o
360o
Sin
0
1/2
1/2
3/2
1
0
-1
0
Cos
1
3/2
1/2
1/2
0
-1
0
1
Tan
0
1/3
1
3
0
0
Cot
3
1
1/3
0
0
Sec
1
2/3
2
2
-1
1
cosec
2
2
2/3
1
-1

TRIGONOMETRIC IDENTITIES
Sin2θ+Cos2θ=1,Sin2θ=1Cos2θ,Cos2θ=1Sin2θ
Sec2θTan2θ=1,Sec2θ=1+Tan2θ,Tan2θ=Sec2θ1
Cosec2θCot2θ=1,Cosec2θ=1+Cot2θ,Cot2θ=Cosec2θ1
TRANSFORMATION OF ANGLES
 sin(90 - θ)   = cosθ,                        cos(90 - θ) =  sinθ,   
 tan(90 - θ)  = cotθ,                          cot(90 - θ) = tanθ,    
sec(90 - θ)   = cosecθ,                  cosec(90 - θ) = secθ
TRIGONOMETRIC FORMULAS APPLICABLE  10TH  ONWARD
MOVEMENT OF ANGLE IN DIFFERENT  QUADRANT
https://dinesh51.blogspot.com
TRIGONOMETRY

SIGN OF TRIGONOMETRIC RATIOS IN DIFFERENT QUADRANT
https://dinesh51.blogspot.com
COMPLETE  TRANSFORMATION OF ANGLES
 sin(90 - θ)   = cosθ,                        cos(90 - θ) =  sinθ,   
 tan(90 - θ)  = cotθ,                          cot(90 - θ) = tanθ,    
sec(90 - θ)   = cosecθ,                  cosec(90 - θ) = secθ

sin(90 + θ)   = cosθ,                        cos(90 + θ) =  -sinθ, 
 tan(90 + θ)  = -cotθ,                          cot(90 + θ) = -tanθ,    
sec(90 + θ)   = -cosecθ,                  cosec(90 + θ) = secθ

sin(180 - θ)   = sinθ,                          cos(180 - θ) =  -cosθ, 
 tan(180 - θ)  = -tanθ,                          cot(180 - θ) = -cotθ,    
sec(180 - θ)   = -secθ,                      cosec(180 - θ) = cosecθ

sin(180 + θ)   = -sinθ,                          cos(180 + θ) =  -cosθ, 
 tan(180 + θ)  = tanθ,                          cot(180 + θ) = cotθ,    
sec(180 + θ)   = -secθ,                      cosec(180 + θ) = -cosecθ

sin(270 - θ)   = -cosθ,                        cos(270 - θ) =  sinθ, 
 tan(270 - θ)  = cotθ,                          cot(270 - θ) = tanθ,    
sec(270 - θ)   = cosecθ,                  cosec(270 - θ) = secθ
DIFFERENT SYSTEMS OF ANGLES
CENTESIMAL SYSTEM
1Rightangle=100gradesor90o=100g
1grade=100minutesor1g=100
1minute=100secondsor1=100
SEXAGESIMAL SYSTEM
1Rightangle=90o
1degree=60minuteor1o=60
1minute=60secondor1=60
CIRCULAR SYSTEM
Radian Measure:- Angle made by an arc of unit length in a circle of unit radius is called one radian
OneRadian=UnitlengthofarcUnitRadius
θRadian=lengthofarcRadiusofCircleorθ=lrorl=rθ
RELATION BETWEEN DEGREE AND RADIAN
Angleatthecentreofthecircle=2πor360o
2πRadian=360oπRadian=180o
1Radian=180π180×722=57o16
180o=πRadian1o=πRadian=227×180Radian=0.01746Radian
tan(A+B)=tanA+tanB1tanAtanB
tan(AB)=tanAtanB1+tanAtanB
cot(A+B)=cotAcotB1cotA+cotB
cot(AB)=cotAcotB+1cotAcotB
TRIGONOMETRY-shikhakaushal.blogspot.com
TRIGONOMETRIC FORMULAS WITH MULTIPLE ANGLE
Sin2θ=2SinθCosθOR2tanθ1+tan2θ
Cos2θ=Cos2θSin2θ,or2Cos2θ1,or12Sin2θor1tan2θ1+tan2θ
tan2θ=2tanθ1tan2θ
Sin3θ=3Sinθ4Sin3θ
Cos3θ=(3Cosθ4Cos3θ)or(4Cos3θ3Cosθ)
Tan3θ=3tanθtan3θ13tan2θ
Sin2θ=1cos2θ2,Sin24θ=1cos8θ2
Cos2θ=1+cos2θ2,Cos24θ=1+cos8θ2
tan2θ=1cos2θ1+cos2θ,tan24θ=1cos8θ1+cos8θ
TRIGONOMETRIC FORMULAS WITH SUB-MULTIPLE ANGLE
Sinθ=2sinθ2cosθ2,
Sinθ=2sinθ2cosθ2,or2tanθ21+tan2θ2
Cos2θ=Cos2θ2Sin2θ2,or2Cos2θ21,or12Sin2θ2or1tan2θ21+tan2θ2
Tanθ=2tanθ21tan2θ2
Sin2θ2=1cosθ2,Cos2θ2=1+cosθ2
tan2θ2=1cosθ1+cosθ,
A, B FORMULAS:-
2SinACosB=Sin(A+B)+Sin(AB)
2CosASinB=Sin(A+B)Sin(AB)
2CosACosB=Cos(A+B)+Cos(AB)
2SinASinB=Cos(A+B)+Cos(AB)
C,D FORMULAS:- 
SinC+SinD=2Sin(C+D2)Cos(CD2)
SinCSinD=2Cos(C+D2)Sin(CD2)
CosC+CosD=2Cos(C+D2)Cos(CD2)
CosCCosD=2Sin(C+D2)Sin(CD2)
SOME SPECIAL FORMULAS
Tan(45+θ)=1+tanθ1tanθ
Tan(45θ)=1tanθ1+tanθ
Sin2ASin2B=Sin(A+B)Sin(AB)
Cos2ACos2B=Sin(A+B)Sin(AB)
PERIODIC FUNCTIONS
All trigonometric ratios are periodic functions
Sin(x+2π)=Sin(x+4π)=Sin(x+6π)=Sin(x+8π)=..........
Cos(x+2π)=Cos(x+4π)=Cos(x+6π)=Cos(x+8π)=..........
Sec(x+2π)=Sec(x+4π)=Sec(x+6π)=Sec(x+8π)=..........
Cosec(x+2π)=Cosec(x+4π)=Cosec(x+6π)=Cosec(x+8π)=..........
Onchangingxto2nπ,sinx,cosx,secx,cosecxallremainunchanged.
sinx,cosx,secx,cosecxallareperiodicfunctionsandtheirperiodis2π
tanx=tan(x±π)=tan(x±2π)=tan(x±3π)=........
cotx=cot(x±π)=cot(x±2π)=cot(x±3π)=........
tanxandcotxareperiodicandtheirperiodisπ
PRINCIPAL SOLUTION OF TRIGONOMETRIC FUNCTIONS
Solutionsoftrigonometricequationsforwhich0x2πarecalledprincipalsolutions
PERIODIC VALUES:-
It is the least value which when added to the given function so that the value of that function remain unchanged.
TRIGONOMETRIC EQUATIONS:-
Equations involving trigonometric functions of a variable are called trigonometric equations.
GENERAL SOLUTIONS OF TRIGONOMETRIC EQUATIONS:-
Ifsinx=0,thenx=nπ
Ifcosx=0,thenx=(2n+1)π2
Iftanx=0,thenx=nπ
Ifsinx=sinythenx=nπ+(1)ny
Ifcosx=cosy,thenx=2nπ±y
Iftanx=tany,thenx=nπ+ywww.shikhakaushal.blogspot.com
Sin(A+B)=SinACosB + CosASinB
Sin(A-B)=SinACosB - CosASinB
Cos(A+B)=CosACosB - SinA SinB
Cos(A-B)=CosACosB + SinA SinB

Popular posts from this blog

Compound Interest class 8 chapter6(notes) maths definition, formula

Revision notes for class 10 & 9 CIRCLES

Basic concept of probability