BASIC CONCEPT OF BINOMIAL THEOREM
Binomial Theorem
example of a binomial |
What happens when we multiply a binomial by itself ... many times?
The calculations get longer and longer as we go, but there is some kind of pattern developing.
That pattern is summed up by the Binomial Theorem:
The Binomial Theorem
Don't worry ... it will all be explained!
And you will learn lots of cool maths symbols along the way.
Exponents
First, a quick summary of Exponents.
An exponent says how many times to use something in a multiplication.
An exponent of 1 means just to have it appear once, so we get the original value:
An exponent of 0 means not to use it at all, and we have only 1:
Exponents of (a+b)
Now on to the binomial.
We will use the simple binomial a+b, but it could be any binomial.
Let us start with an exponent of 0 and build upwards.
Exponent of 0
When an exponent is 0, we get 1:
(a+b)0 = 1
Exponent of 1
When the exponent is 1, we get the original value, unchanged:
(a+b)1 = a+b
Exponent of 2
An exponent of 2 means to multiply by itself (see how to multiply polynomials):
(a+b)2 = (a+b)(a+b) = a2 + 2ab + b2
Exponent of 3
For an exponent of 3 just multiply again:
(a+b)3 = (a2 + 2ab + b2)(a+b) = a3 + 3a2b + 3ab2 + b3
We have enough now to start talking about the pattern.
The Pattern
In the last result we got:
a3 + 3a2b + 3ab2 + b3
Now, notice the exponents of a. They start at 3 and go down: 3, 2, 1, 0:
Likewise the exponents of b go upwards: 0, 1, 2, 3:
If we number the terms 0 to n, we get this:
k=0 | k=1 | k=2 | k=3 |
a3 | a2 | a | 1 |
1 | b | b2 | b3 |
Which can be brought together into this:
an-kbk
How about an example to see how it works:
Coefficients
So far we have:a3 + a2b + ab2 + b3
But we reallyneed:a3 + 3a2b + 3ab2 + b3
We are missing the numbers (which are called coefficients).
Let's look at all the results we got before, from (a+b)0 up to (a+b)3:
And now look at just the coefficients (with a "1" where a coefficient wasn't shown):
They actually make Pascal's Triangle!
Each number is just the two numbers above it added together (except for the edges, which are all "1")
(Here I have highlighted that 1+3 = 4)
|
Armed with this information let us try something new ... an exponent of 4:
a exponents go 4,3,2,1,0: | a4 | + | a3 | + | a2 | + | a | + | 1 | ||
b exponents go 0,1,2,3,4: | a4 | + | a3b | + | a2b2 | + | ab3 | + | b4 | ||
coefficientsgo 1,4,6,4,1: | a4 | + | 4a3b | + | 6a2b2 | + | 4ab3 | + | b4 |
And that is the correct answer (compare to the top of the page).
We have success!
We can now use that pattern for exponents of 5, 6, 7, ... 50, ... 112, ... you name it!
As a Formula
Our next task is to write it all as a formula.
We already have the exponents figured out:
an-kbk
But how do we write a formula for "find the coefficient from Pascal's Triangle" ... ?
Well, there is such a formula:
It is commonly called "n choose k" because it is how many ways to choose k elements from a set of n.
The "!" means "factorial", for example 4! = 4×3×2×1 = 24
You can read more at Combinations and Permutations.
And it matches to Pascal's Triangle like this: (Note how the top row is row zero and also the leftmost column is zero!) |
Putting It All Together
The last step is to put all the terms together into one formula.
But we are adding lots of terms together ... can that be done using one formula?
Yes! The handy Sigma Notation allows us to sum up as many terms as we want:
Sigma Notation
Now it can all go into one formula:
The Binomial Theorem
Use It
OK ... it won't make much sense without an example.
So let's try using it for n = 3 :
BUT ... it is usually much easier just to remember the patterns:
- The first term's exponents start at n and go down
- The second term's exponents start at 0 and go up
- Coefficients are from Pascal's Triangle, or by calculation using n!k!(n-k)!
Like this:
We may also want to calculate just one term:
Geometry
The Binomial Theorem can be shown using Geometry:
In 2 dimensions, (a+b)2 = a2 + 2ab + b2
In 3 dimensions, (a+b)3 = a3 + 3a2b + 3ab2 + b3
In 4 dimensions, (a+b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
(Sorry, I am not good at drawing in 4 dimensions!)
Advanced Example
And one last, most amazing, example: