INDEFINITE INTEGRALS
IMPORTANT FORMULAS USED IN INTEGRALS
∫xndx=xn+1n+1+C
∫1xdx=logx+C
∫exdx=ex+C
∫axdx=axloga+C
∫[f(x)]n.f′(x)dx=[f(x)]n+1n+1+C
∫f′(x)f(x)dx=log|f(x)|+C
INTEGRAL WITH TRIGONOMETRY
∫sinxdx=−cosx+C
∫cosxdx=sinx+C
∫tanxdx=log|secx|+C,or−log|cosx|+C
∫cotxdx=log|sinx|+C,(or)−log|cosecx|+C
∫secxdx=log|secx+tanx|+C=log∣∣tan(π4+x2)∣∣+C
∫cosecxdx=log|cosecx−cotx|+C=−log|cosecx+cotx|+C=log∣∣tanx2∣∣+C
∫sec2xdx=tanx+C
∫cosec2xdx=−cotx+C
∫secxtanxdx=secx+C
∫cosecxcotxdx=−cosecx+C
∫1a2−x2−−−−−−√dx=sin−1(xa)+C=−cos−1(xa)+C
∫1a2+x2dx=1atan−1(xa)+C=−1acot−1(xa)+C
∫1xx2−a2−−−−−−√dx=1asec−1(xa)+C=−1acosec−1(xa)+C
Integration formulas Part 1 class 12-CBSE
INTEGRAL OF SOME SPECIAL CASES
∫dxa2−x2=12alog∣∣∣x+ax−a∣∣∣+C
∫dxx2−a2=12alog∣∣∣x−ax+a∣∣∣+C
∫dxx2+a2=1atan−1ab+C
∫dxx2−a2−−−−−−√=log∣∣x+x2−a2−−−−−−√∣∣+C
∫dxx2+a2−−−−−−√=log∣∣x+x2+a2−−−−−−√∣∣+C
∫dxa2−x2−−−−−−√=sin−1xa+C
∫x2−a2−−−−−−√dx=x2x2−a2−−−−−−√−a22log∣∣x+x2−a2−−−−−−√∣∣+C
∫x2+a2−−−−−−√dx=x2x2+a2−−−−−−√+a22log∣∣x+x2+a2−−−−−−√∣∣+C
∫a2−x2−−−−−−√dx=x2a2−x2−−−−−−√+a22sin−1xa+C
Integration formulas Part 1 class 12-CBSE Mathematics
INTEGRATION BY PARTIAL FRACTION
px+q(x−a)(x−b)=Ax−a+Bx−b
px+q(x−a)2=Ax−a+B(x−a)2
px2+qx+r(x−a)2(x−b)=Ax−a+B(x−a)2+Cx−b
px2+qx+r(x−a)(x−b)(x−c)=Ax−a+B(x−b)+Cx−c
px2+qx+r(x−a)(x2+bx+c)=Ax−a+Bx+Cx2+bx+c
∫uvdx=u∫vdx−∫(ddxu∫vdx)dx
Integration formulas Part 1 class 12-CBSE Mathematics
While using the Integration by parts the priority of taking 1st function is as follows
I......Inverse Trigonometric Functions
L.....Logarithmic Function
A.....Algebraic Function(Polynomial Function
T......Trigonometric Function
E...... Exponential Function
Integration With Exponential Function
∫ex[f(x)+f′(x)]dx=exf(x)+C
∫f′(x)[f(x)]ndx=[f(x)]−n+1−n+1